STRAYER UNIVERSITY
COMPUTER PROGRAMMING DESIGN -- CIS 110
Course Syllabus

Quarter: Summer 2003
Day(s) & time course meets: Monday, 6:00pm – 10:00pm
Instructor: Clay Watson
Instructor Phone Number: 901-644-6166 anytime.
Office Hours: Monday, 4:00pm – 6:00pm
Instructor Email Address: Clay_StrayerUniv@yahoo.com

I. COURSE DESCRIPTION

This course involves extensive work in the solution of business problems utilizing modern programming languages. It includes the methods of problem analysis, program design and development, using a structured approach. Included in the course will be the following concepts: proper documentation techniques, coding, debugging, subprograms, arrays, searching and sorting.

II. EXPECTED LEARNING OUTCOMES

Upon the successful completion of this course, the student will be able to:

a. Demonstrate an understanding of problem solving concepts and methodologies.
b. List step-by-step algorithms to solve specific problems.
c. Identify flowcharts, pseudocode, hierarchy charts, or other similar tools to document algorithms.
d. Understand programming language syntax.
e. Write, debug, and document computer application programs using structured programming concepts.
f. Demonstrate an understanding of the concepts of array and subroutine processing.

The course instructor will provide additional learning outcomes.

III. INSTRUCTIONAL MATERIALS


IV. TEACHING STRATEGIES

This course will be conducted with lectures based on the text, hands-on application concepts and in-lab programming demonstration of problem solving and computer concepts, applicable problem solving and programming assignments.
VI. COURSE OF STUDY OUTLINE

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture Assignments</th>
<th>Chapter</th>
<th>Hands-on Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Computer Logic</td>
<td>Exercises 1-14</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Code Structure</td>
<td>Exercises 1-8</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Modules, Documentation</td>
<td>Exercises 1-8</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Logical Program Flow</td>
<td>Exercises 1-7</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Midterm</td>
<td>1-4</td>
<td>Last call for programs</td>
</tr>
<tr>
<td>6</td>
<td>Decision Making, Boolean Expressions</td>
<td>Exercises 1-12</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>Looping</td>
<td>Exercises 1-11</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>Control Breaks</td>
<td>Exercises 1-10</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>Arrays</td>
<td>Exercises 1-10</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>Final Exam</td>
<td>5-8</td>
<td>Last call for programs</td>
</tr>
</tbody>
</table>

VI. REQUIREMENTS

Midterm Examination
Final Examination
Programming Assignments
Written and/or oral assignments
Active class participation
Regular class attendance

VII. EVALUATION METHODS

Non-Programming Assignments 15%
Programming Assignments 25%
MidTerm Exam 25%
Final Exam 25%
Class Participation/Attendance 10%

VIII. GRADING SCALE:

90-100 % A
80-89 % B
70-79 % C
60-69 % D
Below 60 % F